SALICIFOLIOL, A NEW FUROLACTONE-TYPE LIGNAN FROM BUPLEURUM SALICIFOLIUM

ANTONIO G. GONZÁLEZ,* RAFAEL ESTÉVEZ-REYES, and CARMEN MATO

Centro de Productos Naturales Orgánicos Antonio González, Carretera La Esperanza 2, 38206 Tenerife, Canary Islands, Spain

ABSTRACT.—Four lignans were obtained from the aerial part of *Bupleurum salicifolium*. Three 2,6-diaryl-3,7-dioxabicyclo-[3.3.0]-octane compounds were identified as eudesmin, pinoresinol, and medioresinol while a fourth, (1R,2R,5S)-6-(3'-methoxy-4'-hydroxyphenyl)-3,7-dioxa-6-oxobicyclo-[3.3.0]-octane, salicifoliol [4], is reported for the first time.

In a preliminary chemical assay of *Bupleurum salicifolium* Soland. (Umbelliferae), a species endemic to the Canary Islands (1), lignans were detected. As these compounds have interesting physiological properties (2), the plant was studied in depth, and stigmasterol, the bisepoxylignans eudesmin [1], pinoresinol [2], and medioresinol [3], and a new furolactone-type epoxylignan, salicifoliol [4], were obtained.

The petroleum ether and C₆H₆ ex-

 γ -lactone and phenolic OH. Its structure was determined as 4 on the basis of its physical and spectral properties and those of its acetyl derivative and by correlation with the data published for other lignans such as pluviatide (7), glaberide I (8), and acuminatolide (9) among others (10, 11).

The ¹H-nmr spectrum of **4** showed signals for a 3-methoxy-4-hydroxyphenyl grouping; the H-5' signals were shifted 1.4 ppm in the acetyl derivative

 $R_1 O \longrightarrow OCH_3$ 1 $R_1=Me, R_2$ $R_1=R_2=R_3$ $R_1=R_2=R_3$ $R_1=H, R_2$ tracts of the aerial parts of the plant were subjected to cc, and five substances were separated. Stigmasterol (3), pinoresinol [2] (4), and medioresinol [3] (5), their acetates, and eudesmin [1] (6) were identified by comparison of their spectral and physical data with those reported in the literature. The ir of the fifth substance showed the presence of a

(Table 1). Signals also appeared for the protons of a bicyclic [3.3.0]-octane system, with the bridgehead H-1 and H-5 at highest field. Two groups of signals for methylene groups were also observed; one was centered at δ 4.27 (2H) and the other 3 Hz further downfield, at δ 4.41 (2H). These latter signals were assigned to the lactone ring methylene (H-8), and this attribution was confirmed by COSY experiments that showed these signals coupled with the bridgehead H-1; the signals at δ 4.27, assigned to H-4, were coupled with H-5.

A doublet centered at δ 4.62 (6.7 Hz) was assigned to the benzylic proton H-2 both because it appeared furthest downfield and because COSY experiments coupled it only with the bridgehead H-1 and, at long distance, with the benzene proton H-2'. This means that the aryl substituent must be exo, as is the case in other bisepoxylignans obtained from *B*. *salicifolium*.

In the ¹³C-nmr spectrum (Table 2), signals appeared at 86.30 ppm in 4 and 86.00 in 5 consistent with a C-2 carbon joined to an exo aryl grouping (12). The C-8 signals, just like the H-8 protons in the ¹H-nmr spectrum, were shifted further downfield than those of C-4 (Table 2) due to the paramagnetic shielding of the carbonyl.

The ¹H- and ¹³C-nmr spectra of salicifoliol and salicifoliol acetate, taken in C_6D_6 , ratified these conclusions (Tables 1 and 2), and the electronic fragmentation spectra are in agreement with the fragmentation pattern for structures such as 4 and 5 (13, 14).

EXPERIMENTAL

GENERAL.---Mp's were taken on a Kofler-type apparatus and are uncorrected. Tlc Si gel (type G Schleicher-Schüll F-1500/LS 254) plates were developed in CHCl₃-*n*-hexane (19:1 and 11:9), CHCl₃, and CHCl₃-EtOAc (9:1) and visualized with I₂ vapors or uv light or sprayed with H₂SO₄-HOAc-H₂O (80:16:4) and charred at 100°. The cc details varied with the compound involved and are given below. A Perkin-Elmer 681 spectrophotometer was used for ir spectra and a Perkin-Elmer 550 SE for uv with quartz cells of 1 and 5 mm and EtOH as solvent. The ms were collected on a VG-Micromass ZAB-2F spectrometer. ¹H- and ¹³C-nmr spectra were taken on a Bruker WD-200 SY at 200 and 50 MHz, respec-

	Compound				
Proton	4		5		
	In CDCl ₃	In C ₆ D ₆	In CDCl ₃	In C ₆ D ₆	
H-1	3.12 dddd	2. 19 dddd	3.07 dddd	2.19 dddd	
H-5	3.42 ddd	2.56 ddd	3.38 ddd	2.49 ddd	
H-4eq	4.18 dd	4.07 dd	4.17 dd	4.08 dd	
H-8ax	4.32 dd	3.64 dd	4.29 dd	3.59 dd	
H-4ax	4.36 dd	3.88 dd	4.31 dd	3.83 dd	
H-8eq	4.50 dd	3.54 dd	4.46 dd	3.50 dd	
H-2ax	4.62 d	4.15 d	4.63 d	4.14 d	
H-6′	6.81 dd	6.42 dd	6.81 dd	6.42 dd	
H-2′	6.89 d	6.68 d	6.92 d	6.68 d	
H-5′	6.91 d	6.92 d	6.97 d	6.92 d	
ОМе	3.91 s	3.16 s	3.79 s	3.29 s	
он	5.67 s	5.47 s		_	
МеСОО	—	—	2.26 s	1.89 s	

TABLE 1. ¹H-nmr Data of Salicifoliol [4] and Salicifoliol Acetate [5].^a

^aChemical shifts in δ (ppm). Coupling constants (Hz), median values: $J_{1,2} = 6.7, J_{1,5} = 9.0, J_{1,8ax} = 2.2, J_{1,8eq} = 6.5, J_{4ax,4eq} = 9.0, J_{4ax,5} = 9.1, J_{4eq,5} = 9.1, J_{8ax,8eq} = 9.6, J_{2',6'} = 2.0, J_{5',6'} = 8.0.$

Carbon	4		5	
	CDCl ₃	C ₆ D ₆	CDCl ₃	C ₆ D ₆
C-1	46.19 48.34 70.00 70.15 86.30 178.24 108.69 114.63 119.27 130.84 146.07 147.12 56.17	45.84 48.27 68.98 69.98 85.89 177.19 108.86 114.66 119.27 131.59 146.37 146.37 55.30	46.21 48.63 70.43 70.07 86.00 179.06 109.99 123.21 118.16 137.74 140.05 153.56 56.16 169.98	45.89 48.49 70.24 68.95 85.57 177.29 110.16 123.23 117.96 136.76 141.40 152.02 55.44 169.84
СООМе	—	—	20.81	20.20

TABLE 2. ¹³C-nmr Data for Salicifoliol [4] and Salicifoliol Acetate [5].^{*}

^aChemical shifts are given in δ (ppm). Assignments based on DEPT experiments (15) and correlations with other substances.

tively, with $CDCl_3$ and C_6D_6 as solvents and TMS as internal reference.

PLANT MATERIAL.—Specimens of fully grown wild plants of *B. salicifolium* collected at the Barranco de Guayadeque, Gran Canaria, Canary Islands were used. A voucher specimen was lodged in the TFC File in the Dept of Biología Vegetal (Botánica) of the Universidad de La Laguna.

ISOLATION AND SEPARATION OF COM-POUNDS.—The aerial parts of *B. salicifolium* without leaves or flowers (5 kg) were cut and then ground and extracted in hot EtOH in a Soxhlet. The EtOH extract was reduced by in vacuo distillation of the solvent, leaving an oily-looking residue which was extracted by heating at reflux with petroleum ether (bp 50–70°) and C₆H₆.

The petroleum ether extract left a dark, oily residue (46.24 g) that was chromatographed on a column of 1000 g Al₂O₃, activity IV (with 10% H₂O) and then eluted repeatedly with *n*-hexane, solutions of *n*-hexane/C₆H₆ of increasing polarity, and C₆H₆; fractions of 500 ml were collected. With *n*-hexane–C₆H₆ (7:3) (1500 ml), a whitish substance (0.14 g) was separated and proved to be stigmasterol (¹H nmr, ms). The C₆H₆ fractions (1000 ml) yielded eudesmin (0.21 g), pinoresinol (¹H nmr, ms) (1.75 g), and medioresinol (¹ H nmr, ms) (0.8 g), separated by thick layer chromatography.

The C_6H_6 extract (428 g) was chromatographed on a column of 3500 g Al₂O₃ and eluted with petroleum ether- C_6H_6 (4:1), petroleum ether/ C_6H_6 , C_6H_6 , C_6H_6 /EtOAc, and EtOAc in order of increasing polarity, and 1000-ml fractions were collected. From the C_6H_6 -EtOAc (9:1) fractions (7 liters), pinoresinol (10.9 g) was separated; from the C_6H_6 -EtOAc (4:1) (1 liter), medioresinol (2.5 g); and from the C_6H_6 -EtOAc (2:3) (5 liters), salicifoliol [4] (0.12 g).

SALICIFOLIOL [4].—Crystallized from C_6H_6 with a few drops of petroleum ether as colorless needles, mp 102–103°. When irradiated with uv light, it shows a weak pale-blue fluorescence. Ir (Nujol) ν max cm⁻¹ 3500, 3365 (broad), 1765, 1613, 1525, 1245, 1180, 1131, 1050, 1030, 990, 970; uv λ max nm 233, 282; ¹H nmr see Table 1; ¹³C nmr see Table 2; eims m/z [M]⁺ 250.0842 (100%), required for $C_{13}H_{14}O_5$, 250.0841, 233 (9), 235 (4), 191 (7), 165 (39), 152 (100); 151.0366 (10) (required for $C_8H_7O_3$, 151.0395), 137.0577 (100) (required 137.0603), 123 (18), 109 (19).

SALICIFOLIOL ACETATE [5].—Prepared by treating salicifoliol [4] with Ac₂O in pyridine at room temperature: mp 207–208°; ir ν max (Nujol) cm⁻¹ 1760, 1742, 1615, 1520, 1220, 1124; ¹H nmr see Table 1; ¹³C nmr see Table 2; eims *m*/z [M]⁺ 292 (12%) (C₁₅H₁₆O₆), 250 (100), 218 (27), 165 (45), 151 (100), 152 (100), 137 (100), 135 (88), 91 (44), 79 (42), 77 (68), 43 (100).

ACKNOWLEDGMENTS

C. Mato is indebted to the Excmo. Cabildo Insular de Gran Canaria for financial support while working on this project.

LITERATURE CITED

- D. Bramwell and Z.I. Bramwell, "Flores silvestres de las Islas Canarias," Cabildo Insular de Gran Canaria, 1976, p. 175.
- W.D. MacRae and G.H. Towers, *Phytochemistry*, 23, 1207 (1984).
- W. Kline, "The Chemistry of Steroids," Methuen, London, 1970, p. 106.
- A. Pelter, E.S. Ward, D.J. Watson, P. Collins, and I.T. Kay, J. Chem. Soc., Perkin Trans. 1, 175 (1982).
- Zhuang Lin-gen, O. Seligmann, K. Jurcic, and H. Wagner, *Planta Med.*, 45, 172 (1982).
- C.K. Atal, K.L. Dhar, and A. Pelter, J. Chem. Soc. C, 2228 (1967).
- J.E.T. Corrie, G.H. Green, E. Ritchie, and W.C. Taylor, Aust. J. Chem., 23, 133 (1970).

- 8. Peking Institute of Pharmaceutical Industry, Yaoxue Tongbao, 15, 42 (1980).
- J. Jakupovic, V.P. Pathak, F. Bohlmann, R.M. King, and H. Robinson, *Phytochemistry*, 26, 803 (1987).
- M. Aoyama and A. Sakakibara, Mokuzai Gakkaishi, 25, 644 (1979).
- M.G. de Carvalho, M. Yoshida, O.R. Gottlieb, and H.E. Gottlieb, *Phytochemistry*, 26, 265 (1987).
- 12. P.K. Agrawal and R.S. Thakur, Magn. Reson. Chem., 23, 389 (1985).
- 13. A. Pelter, J. Chem. Soc. C, 1376 (1967).
- H. Fujimoto and T. Higuchi, Mokuzai Gakkaishi, 23, 405 (1977).
- R. Benn and H. Günter, Angew. Chem., Int. Ed. Engl., 22, 350 (1983).

Received 12 September 1988